Sains Malaysiana 53(12)(2024): 3425-3435

http://doi.org/10.17576/jsm-2024-5312-23

 

A Compartmental Model for the Transmission Dynamics of Rabies Disease in Dog Population

(Suatu Model Petak untuk Transmisi Dinamik Penyakit Rabies dalam Populasi Anjing)

 

THANISHA KALIAPAN1, NYUK SIAN CHONG1,2,*, ILYANI ABDULLAH1,2, ZABIDIN SALLEH1,2 & JANE LABADIN3

 

1Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Special Interest Group on Modelling and Data Analytics (SIGMDA), Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

Diserahkan: 6 Februari 2024/Diterima: 21 Oktober 2024

 

Abstract

Dogs are the main source of more than 90% of human rabies infections that pose a significant threat to public health, primarily in Africa and Asia. However, it is also one of the viral diseases that can be prevented by vaccination that affects both warm-blooded animals and humans. There are two types of rabies vaccines: pre-exposure prophylaxis and post-exposure prophylaxis (PEP).  Mathematical models can be valuable tools for predicting and controlling the spread of rabies disease. Thus, we introduce an SEIV (Susceptible-Exposed-Infected-Vaccinated) model incorporate vaccination control strategy to examine the transmission dynamics of rabies disease in dog population. The basic reproduction number, ,  positively invariant and attracting region, steady states, and the stability analysis of the model are investigated. We find that there are two equilibria exist in the model, i.e., disease-free and endemic equilibria. To prove the global stability of disease-free and endemic equilibria, the theory of asymptotic autonomous system and geometric approach have been applied, respectively. Hence, we find that the disease-free and endemic equilibria are globally asymptotically stable if  and , respectively. Numerical simulations are performed to depict the dynamics of the model. As a conclusion, we will be able to control the disease effectively if the vaccination rate is sufficiently large.

 

Keywords: Nonlinear ordinary differential equation; numerical simulation; rabies disease; stability analysis; steady state

 

Abstrak

Anjing merupakan punca utama lebih daripada 90% jangkitan rabies manusia yang menimbulkan ancaman ketara kepada kesihatan awam, terutamanya di Afrika dan Asia. Walau bagaimanapun, ia juga merupakan salah satu penyakit virus yang boleh dicegah dengan vaksinasi yang memberi kesan kepada haiwan berdarah panas dan manusia. Terdapat dua jenis vaksin rabies: profilaksis pra-pendedahan dan profilaksis pasca-pendedahan (PPP). Model matematik boleh menjadi alat yang berguna untuk meramal dan mengawal penyebaran penyakit rabies. Oleh itu, kami memperkenalkan suatu model SEIV (Rentan-Terdedah-Dijangkiti-Diberi vaksin) yang menggabungkan strategi kawalan vaksinasi untuk mengkaji dinamik penularan penyakit rabies dalam populasi anjing. Nombor reproduksi asas, , rantau invarian positif dan menarik, keadaan pegun dan analisis kestabilan model telah dikaji. Kami mendapati bahawa terdapat dua titik keseimbangan yang wujud dalam model, iaitu, titik keseimbangan bebas penyakit dan endemik. Untuk membuktikan kestabilan global bagi titik keseimbangan bebas penyakit dan endemik, teori sistem autonomi asimptotik dan pendekatan geometri masing-masing telah diaplikasi. Oleh itu, kami mendapati bahawa titik keseimbangan bebas penyakit dan endemik masing-masing mencapai kestabilan secara asimptotik secara global jika  dan . Simulasi berangka dijalankan untuk menggambarkan kedinamikan model. Kesimpulannya, kita akan dapat mengawal penyakit ini dengan berkesan sekiranya kadar vaksinasi cukup besar.

 

Kata kunci: Analisis kestabilan; keadaan pegun; penyakit rabies; persamaan pembezaan biasa tak linear; simulasi berangka

 

RUJUKAN

Abdulmajid, S. & Hassan, A.S. 2021. Analysis of time delayed Rabies model in human and dog populations with controls. Afrika Matematika 32(5): 1067-1085.

Bornaa, C.S., Seidu, B. & Daabo, M.I. 2020. Mathematical analysis of rabies infection. Journal of Applied Mathematics 2020: 1804270. https://doi.org/10.1155/2020/1804270

Bryce, C.M. 2021. Dogs as pets and pests: Global patterns of canine abundance, activity, and health. Integrative and Comparative Biology 61(1): 154-165.

CDC. 2023. Information for Veterinarians. Rabies. https://www.cdc.gov/rabies/hcp/

veterinarians/index.html. Accessed 24 August 2024.

Colombi, D., Poletto, C., Nakouné, E., Bourhy, H. & Colizza, V. 2020. Long-range movements coupled with heterogeneous incubation period sustain dog rabies at the national scale in Africa. PLoS Neglected Tropical Diseases 14(5): e0008317.

Coppel, W.A. & Vleck, F.S.V. 1968. Stability and asymptotic behavior of differential equations. The American Mathematical Monthly 75(3): 319. doi:10.2307/2315010

DeJesus, E.X. & Kaufman, C. 1987. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Physical Review A 35(12): 5288.

Diekmann, O., Heesterbeek, J.A.P. & Metz, J.A.J. 1990. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28: 365-382.

Eze, O.C., Mbah, G.E., Nnaji, D.U. & Onyiaji, N.E. 2020. Mathematical modelling of transmission dynamics of rabies virus. International Journal of Mathematics Trends and Technology 66(7): 2231-5373.

Freedman, H.I., Ruan, S. & Tang, M. 1994. Uniform persistence and flows near a closed positively invariant set. Journal of Dynamics and Differential Equations 6: 583-600.

Gold, S., Donnelly, C.A., Woodroffe, R. & Nouvellet, P. 2021. Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs. PLoS Neglected Tropical Diseases 15(7): e0009581.

Gold, S., Donnelly, C.A., Nouvellet, P. & Woodroffe, R. 2020. Rabies virus-neutralising antibodies in healthy, unvaccinated individuals: What do they mean for rabies epidemiology? PLoS Neglected Tropical Diseases 14(2): e0007933.

Ho, M.T., Datta, A. & Bhattacharyya, S.P. 1998. An elementary derivation of the Routh-Hurwitz criterion. IEEE Transactions on Automatic Control 43(3): 405-409.

Huang, J., Ruan, S., Shu, Y. & Wu, X. 2018. Modeling the transmission dynamics of rabies for dog, chinese ferret badger and human interactions in Zhejiang Province, China. Bulletin of Mathematical Biology 81: 939-962.

Hutson, V. & Schmitt, K. 1992. Permanence and the dynamics of biological systems. Mathematical Biosciences 111(1): 1-71.

Khatwani, K. 1981. On routh-hurwitz criterion. IEEE Transactions on Automatic Control 26(2): 583-584.

Li, M.Y. & Muldowney, J.S. 1996. A geometric approach to global-stability problems. SIAM Journal on Mathematical Analysis 27(4): 1070-1083.

Lv, M.M., Sun, X.D., Jin, Z., Wu, H.R., Li, M.T., Sun, G-Q., Pei, X., Wu, Y-T., Liu, P., Li, L. & Zhang, J. 2023. Dynamic analysis of rabies transmission and elimination in mainland China. One Health 17: 100615.

Martin Jr., R.H. 1974. Logarithmic norms and projections applied to linear differential systems. Journal of Mathematical Analysis and Applications 45(2): 432-454.

Musa, S.S., Zhao, S., He, D. & Liu, C. 2020. The long-term periodic patterns of global rabies epidemics among animals: A modeling analysis. International Journal of Bifurcation and Chaos 30(03): 2050047.

Nagarajan, T. & Rupprecht, C.E. 2020. History of rabies and rabies vaccines. In Rabies and Rabies Vaccines, edited by Ertl, H. Springer, Cham. pp. 11-43.

Renald, E.K., Kuznetsov, D. & Kreppel, K. 2020. Desirable dog-rabies control methods in an urban setting in Africa - A mathematical model. International Journal of Mathematical Sciences and Computing 6(1): 49-67.

Ruan, S. 2017. Spatiotemporal epidemic models for rabies among animals. Infectious Disease Modelling 2(3): 277-287.

Thieme, H.R. 1992. Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. Journal of Mathematical Biology 30(7): 755-763.

Van den Driessche, P. & Watmough, J. 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180(1-2): 29-48.

World Health Organization (WHO). 2023a. Rabies. https://www.who.int/ news-room/fact-sheets/detail/rabies. Accessed: 24 August 2024.

World Health Organization (WHO). 2023b. Zero by 30: The Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030. https://www.who.int/southeastasia/health-topics/rabies/rabies-zero-deaths-by-2030. Accessed: 24 August 2024.

Wolkowicz, G.S. 1996. The theory of the chemostat: Dynamics of microbial competition. Bulletin of Mathematical Biology 3(58): 595-598.

 

*Pengarang untuk surat-menyurat; email: nyuksian@umt.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya